[別館]球面倶楽部零八式markIISR

東大入試数学中心。解説なので解答としては不十分。出題年度で並ぶようにしている。大人の解法やうまい解法は極めて主観的に決めている。

1948年(昭和23年)東京大学工学部-数学[3]

2020.04.03記

[3] 次の積分値を求めよ.
 I=\displaystyle\int_{-a}^{a}\dfrac{|x^3|dx}{\sqrt{a^2-x^2}(\sqrt{2}a-x)} 但し  a\gt 0 とする.

2022.07.19記

[解答]
 I=\displaystyle\int_{-a}^{0}\dfrac{-x^3 dx}{\sqrt{a^2-x^2}(\sqrt{2}a-x)} +\displaystyle\int_{0}^{a}\dfrac{x^3dx}{\sqrt{a^2-x^2}(\sqrt{2}a-x)}
であり,前の積分y=-x を置換すると
 \displaystyle\int_{-a}^{0}\dfrac{-x^3 dx}{\sqrt{a^2-x^2}(\sqrt{2}a-x)} =\displaystyle\int_{a}^{0}\dfrac{y^3 (-dy)}{\sqrt{a^2-y^2}(\sqrt{2}a+y)} =\displaystyle\int_{0}^{a}\dfrac{y^3 dy}{\sqrt{a^2-y^2}(\sqrt{2}a+y)} =\displaystyle\int_{0}^{a}\dfrac{x^3 dy}{\sqrt{a^2-x^2}(\sqrt{2}a+x)}
となるので,
 I=\displaystyle\int_{0}^{a}\dfrac{x^3 dx}{\sqrt{a^2-x^2}(\sqrt{2}a+x)} +\displaystyle\int_{0}^{a}\dfrac{x^3dx}{\sqrt{a^2-x^2}(\sqrt{2}a-x)}
 =2\sqrt{2}a \displaystyle\int_{0}^{a}\dfrac{x^3 dx}{\sqrt{a^2-x^2}(2a^2-x^2)}
となる.\sqrt{a^2-x^2}=t とおくと
a^2-x^2=t^2 から -xdx=tdt であるから
I=2\sqrt{2}a \displaystyle\int_{a}^{0}\dfrac{t^2-a^2}{a^2+t^2}dt
=2\sqrt{2}a \displaystyle\int_{0}^{a}\dfrac{a^2-t^2}{a^2+t^2}dt
=2\sqrt{2}a \displaystyle\int_{0}^{a}\left(\dfrac{2a^2}{a^2+t^2}-1\right)dt
=2\sqrt{2}a \Bigl[2a\,\mbox{Arctan}\,\dfrac{t}{a}-t\Bigr]_{0}^{a}
=2\sqrt{2}a \left(\dfrac{a\pi}{2}-a\right)
=\sqrt{2}(\pi-2) a^2

[解答]
x=a\sin\theta とおくと
 I=\displaystyle\int_{-\pi/2}^{\pi/2}\dfrac{a^4|\sin^3\theta|\cos\theta d\theta}{a\cos\theta(\sqrt{2}a-a\sin\theta)}
 =a^2\displaystyle\int_{-\pi/2}^{\pi/2}\dfrac{|\sin^3\theta| d\theta}{\sqrt{2}-\sin\theta}
 =a^2\displaystyle\int_{-\pi/2}^{0}\dfrac{-\sin^3\theta d\theta}{\sqrt{2}-\sin\theta} +a^2\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^3\theta d\theta}{\sqrt{2}-\sin\theta}
 =a^2\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^3\theta d\theta}{\sqrt{2}+\sin\theta} +a^2\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^3\theta d\theta}{\sqrt{2}-\sin\theta}
 =2\sqrt{2} a^2\displaystyle\int_{0}^{\pi/2}\dfrac{\sin^3\theta d\theta}{2-\sin^2\theta}
 =2\sqrt{2} a^2\displaystyle\int_{0}^{\pi/2}\dfrac{(1-\cos^2\theta)\sin\theta d\theta}{1+\cos^2\theta}
 =2\sqrt{2} a^2\displaystyle\int_{0}^{1}\dfrac{1-t^2}{1+t^2} dt(\cos\theta=t
=2\sqrt{2}a^2 \displaystyle\int_{0}^{1}\left(\dfrac{2}{1+t^2}-1\right)dt
=2\sqrt{2}a^2 \Bigl[2\,\mbox{Arctan}\, t-t\Bigr]_{0}^{1}
=2\sqrt{2}a^2 \left(\dfrac{\pi}{2}-1\right)
=\sqrt{2}(\pi-2) a^2