[別館]球面倶楽部零八式markIISR

東大入試数学中心。解説なので解答としては不十分。出題年度で並ぶようにしている。大人の解法やうまい解法は極めて主観的に決めている。

1994年(平成6年)東京大学前期-数学(理科)

2024.01.10記

[1] f(x)=x^4+x^3+\dfrac{1}{2}x^2+\dfrac{1}{6}x+\dfrac{1}{24}
g(x)=x^5+x^4+\dfrac{1}{2}x^3+\dfrac{1}{6}x^2+\dfrac{1}{24}x+\dfrac{1}{120}
とする.このとき,以下のことが成り立つことを示せ.

(1) 任意の実数 x に対し,f(x)\gt 0 である.

(2) 方程式 g(x)=0 はただひとつの実数解 \alpha をもち,-1\lt \alpha\lt 0 となる.

[2] a=\sin^2\dfrac{\pi}{5}b=\sin^2\dfrac{2\pi}{5} とおく.このとき,以下のことが成り立つことを示せ.

(1) a+b および ab有理数である.

(2) 任意の自然数 n に対し (a^{-n}+b^{-n}){(a+b)}^n は整数である.

[3] xyz 空間において条件 x^2+y^2 \leqq z^2z^2 \leqq x0 \leqq z \leqq 1 をみたす点 \mbox{P}(x,y,z) の全体からなる立体を考える.この立体の体積を V とし,0\leqq k\leqq 1 に対し,z 軸と直交する平面 z=k による切り口の面積を S(k) とする.

(1) k=\cos\theta とおくとき S(k)\theta で表せ.ただし0\leqq \theta\leqq\dfrac{\pi}{2}とする.

(2) V の値を求めよ.

[4] 0\lt c\lt 1 とする.0\leqq x \lt 1 において連続な関数 f(x) に対して
f_1(x)=f(x)+\displaystyle\int_{0}^{c} f(t)\,dt
f_2(x)=f(x)+\displaystyle\int_{0}^{c} f_1(t)\,dt
とおく.以下,関数 f_3(x)f_4(x),… を順次
f_n(x)=f(x)+\displaystyle\int_{0}^{c} f_{n-1}(t)\,dt
n=34,…)により定める.また,g(c)=\displaystyle\int_{0}^{c} f(t)\,dtとし,n=123,…に対しg_n(c)=\displaystyle\int_{0}^{c} f_n(t)\,dt とおく.このとき,0\lt x\lt 1 を満たす任意の x に対し xf(x)=g(x)+x\displaystyle\lim_{n\to\infty} g_n(x) が成り立ち,さらに f(0)=1 となるような関数 f(x) を求めよ.

[5] 大量のカードがあり,各々のカードに123456 の数字のいずれかの一つが書かれている.これらのカードから無作為に 1 枚をひくとき,どの数字のカードをひく確率も正である.さらに,3 の数字のカードをひく確率は p であり,1256 の数字のカードをひく確率はそれぞれ q に等しいとする.

これらのカードから 1 枚をひき,その数字 a を記録し,このカードをもとに戻して,もう 1 枚ひき,その数字を b とする.このとき,a+b\leqq 4 となる事象を Aa\lt b となる事象を B とし,それぞれのおこる確率を P(A)P(B) と書く.

(1) E=2P(A)+P(B) とおくとき,Epq で表せ.

(2) \dfrac{1}{p}\dfrac{1}{q} がともに自然数であるとき,E の値を最大にするような pq を求めよ.

[6] xy 平面上の 2\mbox{P}\mbox{Q} に対し,\mbox{P}\mbox{Q}x 軸または y 軸に平行な線分からなる折れ線で結ぶときの経路の長さの最小値をd(\mbox{P},\mbox{Q})で表す.

(1) 原点 \mbox{O}(0,0) と点 \mbox{A}(1,1) に対し,d(\mbox{O},\mbox{P})=d(\mbox{P},\mbox{A}) を満たす点 \mbox{P}(x,y) の範囲を xy 平面上に図示せよ.

(2) 実数 a\geqq 0 に対し,点 \mbox{Q}(a,a^2+1) を考える.次の条件(\ast)を満足する点 \mbox{P}(x,y) の範囲を xy 平面上に図示せよ.

\ast)原点 \mbox{O}(0,0) に対し,d(\mbox{O},\mbox{P})=d(\mbox{P},\mbox{Q}) となるような a\geqq 0 が存在する.

1994年(平成6年)東京大学前期-数学(理科)[1] - [別館]球面倶楽部零八式markIISR
1994年(平成6年)東京大学前期-数学(理科)[2] - [別館]球面倶楽部零八式markIISR
1994年(平成6年)東京大学前期-数学(理科)[3] - [別館]球面倶楽部零八式markIISR
1994年(平成6年)東京大学前期-数学(理科)[4] - [別館]球面倶楽部零八式markIISR
1994年(平成6年)東京大学前期-数学(理科)[5] - [別館]球面倶楽部零八式markIISR
1994年(平成6年)東京大学前期-数学(理科)[6] - [別館]球面倶楽部零八式markIISR