2023.08.23記
(1) は,任意の三角形をそれと相似な三角形にうつす.
(2) は,点
を点
にうつす.
このような行列 をすべて求めよ.
も相似変換と言ったりするのでややこしい.
2020.11.24記
全ての三角形をそれと相似な三角形にうつす1次変換は回転拡大または折り返し拡大となる.
とする.そして
による像をそれぞれ
とする.
このとき, の直角二等辺三角形
の像において
とすると,
となり,
となとなる.このとき直角二等辺三角形
の像が直角二等辺三角形にならないので矛盾する.
よって,
が成立することが必要で,このとき
なる
,
が存在する.
このとき, の表す1次変換は回転拡大または折り返し拡大となるから十分である.
以上から全ての三角形をそれと相似な三角形にうつす1次変換は回転拡大または折り返し拡大となる.
本問において, を
にうつすことから
,
となる.
本問の場合は与えられた条件が特殊なため,次のように解くことができる.
とすると,これは正三角形であり,この像
について,これも正三角形だから,
となることが必要で,このとき
,
となり,回転拡大または折り返し拡大となり十分.
2023.08.23記
[別解] を参考にすれば,少し計算が必要だが,全ての三角形をそれと相似な三角形にうつす1次変換は回転拡大または折り返し拡大となることを機械的に示すことができる.
少なくとも正三角形は正三角形に移るので
,
の像は
,
(複号同順)
のように書ける必要がある.こ のとき
となるが,これは回転拡大または折り返し拡大となるので十分である.
[解答] は逆行列の計算が不要に代わりに論理的に説明する必要であるが,こちらは具体例1つで回転拡大または折り返し拡大となることが示せる代わりに逆行列の計算が必要となる.
2023.08.24記
正規直交基底に拘らなければ
とおくと
であり,正三角形が正三角形に移ることから
をみたす実数
このとき,平面上の任意のベクトル
の像
に対し,
から
,
つまり
が成立するので, は回転拡大か折り返し拡大である.
とすることができる.